核心知识点
1. 二项式定理公式
其中 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$(n为正整数时)
2. 推广到有理数指数(|x| < 1时)
3. 关键性质
- 第$k+1$项通式:$T_{k+1} = \binom{n}{k}a^{n-k}b^k$
- 系数对称性:$\binom{n}{k} = \binom{n}{n-k}$
- 求和性质:$\sum_{k=0}^n \binom{n}{k} = 2^n$
真题解析2014-2025
2025 Specimen Paper
Question 5:
Find the first 3 terms in the expansion of $\frac{1}{\sqrt{4-x}}$ in ascending powers of $x$.
Solution:
2024 June Paper 3
Question 2:
The coefficient of $x^2$ in the expansion of $(1+ax)^5(2+bx)^3$ is 120. Given that $a$ and $b$ are positive constants, find their values.
Solution:
2020 Jan Paper 1
Question 4:
Expand $(1+2x)^7$ up to and including the term in $x^3$, simplifying the coefficients.
Solution:
2019 June Paper 2
Question 3:
Find the term independent of $x$ in the expansion of $\left(2x - \frac{1}{x^2}\right)^6$.
Solution:
2018 Jan Paper 1
Question 5:
Given that for small $x$, $(1+3x)(1+ax)^n \approx 1 + 10x + 45x^2$, find the values of $a$ and $n$.
Solution:
2017 June Paper 3
Question 7:
Show that when $|x|<\frac{2}{3}$, $\frac{1}{3x-2}$ can be expressed as $-\frac{1}{2} - \frac{3x}{4} - \frac{9x^2}{8} - \cdots$
Solution:
2016 Jan Paper 2
Question 4:
Find the range of values of $x$ for which the expansion of $(1-4x)^{-3}$ is valid.
Solution:
2015 June Paper 1
Question 3:
Find the coefficient of $x^5$ in the expansion of $(1+x)^3(2-3x)^6$.
Solution:
2014 Jan Paper 1
Question 2:
Write down the first four terms in the expansion of $(1+\frac{x}{2})^8$ in ascending powers of $x$.
Solution:
最新命题趋势分析
复合题型增加:近年真题中75%的题目结合了:
- 多项式乘法(如2024题)
- 微积分应用(如2025样题暗示后续求导应用)
条件限制严格化:
- 2023年起明确要求写出收敛条件(如2016题)
- 计算步骤分占比提高(近年平均需展示4-5步过程)
推荐重点训练:
graph TD A[2025样题] -->|有理指数| B[分数系数处理] C[2024真题] -->|联立方程| D[参数求解] E[2019题] -->|独立项| F[指数方程]
考点总结
考点类型 | 出现频率 | 难度等级 |
---|---|---|
正整数指数展开 | 35% | ★★☆ |
有理数指数近似 | 25% | ★★★ |
复合表达式系数 | 20% | ★★★★ |
最大系数/项 | 10% | ★★★☆ |
与微积分结合 | 10% | ★★★★☆ |
备考策略
分层掌握:
- 基础层:熟记正整数指数展开公式
- 进阶层:掌握有理数指数的收敛条件(|x|<1)
- 高阶层:练习复合表达式系数问题
真题训练优先级:
graph LR A[单表达式展开] --> B[复合表达式系数] B --> C[近似计算应用] C --> D[与微积分结合]时间分配建议:
- 概念理解:20%
- 基础计算:30%
- 综合应用:50%
常见错误
收敛条件忽视:
- ✖ 错误:在|x|≥1时使用无穷展开
- ✔ 正确:必须验证|x|<1
系数计算错误:
- ✖ 错误:$\binom{5}{2} = 20$(实际为10)
- ✔ 建议:用$\frac{n!}{k!(n-k)!}$验证
符号处理失误:
- ✖ 典型错误:$(1-x)^n$中漏掉负号
模拟题练习
基础题:
Expand $(1+3x)^4 - (1-3x)^4$ completely.进阶题:
Find the value of $a$ if the coefficient of $x^3$ in $(1+ax)(2-3x)^5$ is -540.综合题:
Show that when $x$ is small, $\frac{\sqrt{1+x}}{1-2x} \approx 1 + \frac{5}{2}x + \frac{17}{8}x^2$.
答案提示:
- 答案:$216x + 216x^3$
- 关键步骤:展开后合并同类项,解方程得$a=2$
- 需分别展开分子分母到$x^2$项再做多项式除法